The 33-centimeter or 900 MHz band is a portion of the UHF radio spectrum internationally allocated to amateur radio on a secondary basis. It ranges from 902 to 928 MHz and is unique to ITU Region 2.[1] It is primarily used for very local communications as opposed to bands lower in frequency. However, very high antennas with high gain have shown 33 centimeters can provide good long range communications almost equal to systems on lower frequencies such as the 70 centimeter band. The band is also used by industrial, scientific, and medical (ISM) equipment, as well as low powered unlicensed devices. Amateur stations must accept harmful interference caused by ISM users[1] but may receive protection from unlicensed devices.
In ITU Region 3, New Zealand domestically allocates 921 MHz to 928 MHz to amateurs.[2]
Contents |
The 33 centimeter band has a somewhat short history, being one of the newest amateur radio bands.
In 1985, the Federal Communications Commission allocated the frequency band between 902 and 928 MHz to ISM (Industrial, Scientific, and Medical) devices. In that proceeding, the band was also allocated to the Amateur Radio Service on a secondary basis meaning amateurs could use the band as long as they accepted interference from and did not cause interference to primary users.
In the mid 1990s, many cordless phone manufacturers started producing phones that used the lower and upper ends of the 33 centimeter band for communication between the handset and base. These phones, which are regulated by Part 15 of the FCC's regulations, have made amateur use of the upper and lower end of the 33 centimeter band somewhat tricky due to the amount of these phones being used by the general population. Part 15 devices, by law, must accept interference from any licensed radio service with which they share frequencies.
In the early 1990s, wireless computer networking was just becoming affordable. Several competing technologies emerged that made use of the 902-928 MHz ISM band, such as:
MotoTalk or with Nextel, DirectTalk, uses the 900 ISM band. It uses FHSS and employs 10 "channels" and 15 "privacy codes". This is available as a feature on several of the walkie-talkie phones, for "off network" simplex communications.
Motorola makes a line of walkie-talkies (the DTR family) which are FHSS digital units. They are very similar to the DirectTalk-capable iDEN cellphones, even sharing some accessory items, but it has not been confirmed that they can interoperate with DirectTalk units.
Trisquare makes a line of walkie-talkies (the eXtreme Radio Service family) that are also license free FHSS units, operating in the 900 MHz band. They are similar to DirectTalk but not compatible.
Today, the 33 centimeter band is rapidly becoming popular with many UHF enthusiasts. Currently, it is used by amateurs for a variety of purposes.
Amateur television is arguably the most popular activity on the 33 centimeter band with some manufacturers actually producing ATV equipment for the band. The first repeater to use the new band, the NU6X/R (Amateur TV Network) on 923.25 MHz, was activated and used at the minute the FCC allowed amateur use of the band and featured in QST Magazine. The repeater moved to 919.25 MHz and call changed to W6ATN because AVM part 90 service at 927 MHz began operation as a primary user of the band.
Amateurs who are involved in contesting use home-made or commercially available transverters to operate CW and SSB on the lower end of the band, either just above 903 MHz or just above 902 MHz. SSB/CW operations usually use horizontal polarization for most contacts. VHF/UHF contests are conducted by the ARRL several times each year to encourage operations across all ham bands. Contacts must be made in the simplex mode - that is, without using a repeater. Any mode (FM, SSB, CW) and be used. Contact scoring is higher for 33 cm than the lower bands (6m through 70 cm).
No amateur radio equipment manufacturer has ever made an FM repeater for the 33 centimeter band. Amateurs who wish to build a repeater and those who wish to use that repeater must do so using modified commercial equipment designed for use in the mid-800 MHz and mid-900 MHz range. The bulk of modified commercial equipment is manufactured by two companies, Motorola and Kenwood.
For many years, repeaters on the 33 centimeter band used a split of -12 MHz with inputs between 906 and 909 MHz and outputs between 918 and 921 MHz. Today, many new repeaters are using a split of -25 MHz with inputs between 902 and 903 MHz and outputs between 927 and 928 MHz. The reason behind this is that the selection of equipment that can be modified for a -12 MHz split is mainly limited to commercial repeaters and data radios which tend to be older, more expensive, harder to maintain, harder to find parts for, and very time consuming to modify.
With the explosion in popularity of Nextel phones with a push to talk feature, the marketplace has seen a flood of newer 800 and 900 MHz commercial mobile radios that are designed to the following specifications:
The receivers on many of these modern 800 MHz radios can be easily modified to receive higher than 870 MHz, to about 904 MHz with good sensitivity. In addition, the transmitters on many of the aforementioned 900 MHz radios can be easily modified to transmit lower than 935 MHz, to about 926 MHz with acceptable power output. With this in mind, many amateurs have opted to set up repeaters with -25 MHz splits using modified 800 MHz radios as receivers and modified 900 MHz radios as transmitters.
A number of resources are available for amateurs to build repeaters that can be used on the 33 cm band. Some of those resources are:
http://www.repeater-builder.com/motorola/msf/msf-index.html - for use with conversion of the Motorola MSF5000 and PURC stations;
http://www.repeater-builder.com/motorola/nucleus/nuc-article.html - for use with adding analog modulation to the Motorola Nucleus paging station;
http://www.repeater-builder.com/motorola/gtx/gtx-index.html - for use with conversion of the Motorola GTX-series radio;
http://www.repeater-builder.com/maxtrac/maxtrac-900mhz-vco.html and
http://www.repeater-builder.com/maxtrac/maxtrac-900-t2c.html - for use with conversion of the Motorola MaxTrac radio.
Resources are also available via several e-mail discussion groups (such as the Yahoo Groups: "AR902MHz" and "900mhz") where information regarding conversion of other brands commonly used (such as Kenwood, EF Johnson, and GE/Ericsson) can be found/discussed.
The advent of issues involving interference to the PAVE PAWS RADAR systems located on the East and West coasts of the United States has pushed many amateur repeater operators to vacate the 70 cm band in favor of 33 cm, and proliferation of 33 cm repeaters has understandably increased exponentially in the past few years.
Amateurs who use local repeaters on the 33 centimeter band usually use commercial handheld or mobile 900 MHz radios. As shown above, these radios can transmit between 896 and 902 MHz and receive between 935 and 941 MHz. Getting many of these radios to transmit on the repeater's input frequency (between 902 and 903 MHz) and receive on the repeater's output frequency (between 927 and 928 MHz) usually requires very little or no circuit modification, depending on the choice of radio. For instance, the Motorola model GTX (mobile and handheld versions) do not require any hardware modifications at all. Using these commercial radios however, has one handicap: flexibility. Unlike most other ham radio bands, in which one can tune to any frequency within an amateur band, modification of "Channelized" commercial radios maintains them in a channelized state. Therefore, once programmed, the frequencies they operate on cannot be changed at will without re-programming. However, since almost all FM radio equipment used on the 33 cm band amateur band was previously designed for and internally programmed for frequencies outside the 33 cm band edges, reprogramming is always necessary to get them working properly between 902-928 MHz after any physical modifications have been made. This includes the GTX.
Many amateurs have found the 33 centimeter band to be ideal for linking repeaters together. Some of the biggest linked repeater systems in the United States use the 33 centimeter band as their link backbone.
Signal propagation on the 33 centimeter band is very dependent on the transmitting and receiving antenna's line of sight. Because of this, many wide-area coverage systems like repeaters are located on top of large hills and mountains which overlook a vast area. This ensures that the transmitting antenna is higher than terrestrial obstructions such as trees and buildings. Assuming that the transmitting antenna's wavelength, height above average terrain, and effective radiated power is equal, a transmitted signal on 33 centimeters will, generally speaking, usually travel about 3/4 of the distance that the same signal would if transmitted on the 70 centimeter band. The reader is advised to note that receiver front-end noise figure and antenna gain are the defining factors in line-of-sight signal propagation in the local area.
The 33 centimeter band offers excellent building penetration characteristics since the wavelength is relatively small and can fit through windows easier than signals lower in frequency.
In many areas, the 33 centimeter band also has a very low noise floor as compared to bands lower in frequency.
Range | Band | ITU Region 1 | ITU Region 2 | ITU Region 3 |
---|---|---|---|---|
LF | 2200 m | 135.7 kHz - 137.8 kHz | ||
MF | 160 m | 1.810 MHz - 1.850 MHz | 1.800 MHz - 2.000 MHz | 1.800 MHz - 2.000 MHz |
HF | 80 / 75 m | 3.500 MHz - 3.800 MHz | 3.500 MHz - 4.000 MHz | 3.500 MHz - 3.900 MHz |
60 m1 | 5.250 MHz - 5.450 MHz | |||
40 m | 7.000 MHz - 7.200 MHz | 7.000 MHz - 7.300 MHz | 7.000 MHz - 7.200 MHz | |
30 m2 | 10.100 MHz - 10.150 MHz | |||
20 m | 14.000 MHz - 14.350 MHz | |||
17 m2 | 18.068 MHz - 18.168 MHz | |||
15 m | 21.000 MHz - 21.450 MHz | |||
12 m2 | 24.890 MHz - 24.990 MHz | |||
10 m | 28.000 MHz - 29.700 MHz | |||
VHF | 6 m | 50.000 MHz - 52.000 MHz1 | 50.000 MHz - 54.000 MHz | 50.000 MHz - 54.000 MHz |
4 m1 | 70.000 MHz - 70.500 MHz | |||
2 m | 144.000 MHz - 146.000 MHz | 144.000 MHz - 148.000 MHz | 144.000 MHz - 148.000 MHz | |
1.25 m | 220.000 MHz - 225.000 MHz | |||
UHF | 70 cm | 430.000 MHz - 440.000 MHz | 420.000 MHz - 450.000 MHz3 | 420.000 MHz - 450.000 MHz3 |
33 cm | 902.000 MHz - 928.000 MHz | |||
23 cm | 1.240 GHz - 1.300 GHz | |||
13 cm | 2.300 GHz - 2.450 GHz | |||
SHF | 9 cm | 3.400 GHz - 3.475 GHz3 | 3.300 GHz - 3.500 GHz | 3.300 GHz - 3.500 GHz |
5 cm | 5.650 GHz - 5.850 GHz | 5.650 GHz - 5.925 GHz | 5.650 GHz - 5.850 GHz | |
3 cm | 10.000 GHz - 10.500 GHz | |||
1.2 cm | 24.000 GHz - 24.250 GHz | |||
EHF | 6 mm | 47.000 GHz - 47.200 GHz | ||
4 mm3 | 75.500 GHz1 - 81.500 GHz | 76.000 GHz - 81.500 GHz | 76.000 GHz - 81.500 GHz | |
2.5 mm | 122.250 GHz - 123.000 GHz | |||
2 mm | 134.000 GHz - 141.000 GHz | |||
1 mm | 241.000 GHz - 250.000 GHz | |||
THF | Sub-mm | Some administrations have authorized spectrum for amateur use in this region. | ||
1 This is not mentioned in the ITU's Table of Frequency Allocations, but it is a de facto international amateur radio allocation. |
||||
See also: Radio spectrum ยท Electromagnetic spectrum |